Web Image Retrieval Using Clustering Approaches

نویسنده

  • Umesh K K
چکیده

Image retrieval system is an active area to propose a new approach to retrieve images from the large image database. In this concerned, we proposed an algorithm to represent images using divisive based and partitioned based clustering approaches. The HSV color component and Haar wavelet transform is used to extract image features. These features are taken to segment an image to obtain objects. For segmenting an image, we used modified k-means clustering algorithm to group similar pixel together into K groups with cluster centers. To modify Kmeans, we proposed a divisive based clustering algorithm to determine the number of cluster and get back with number of cluster to k-means to obtain significant object groups. In addition, we also discussed the similarity distance measure using threshold value and object uniqueness to quantify the results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Advanced Web Image Retrieval Using Clustering Algorithms

In this paper we propose a novel methodology for Web Image retrieval system that takes an image as the input query and retrieves images based on image content. Content Based Image Retrieval is an approach for retrieving semantically-relevant images from an image store based on algorithmically-derived image features. We propose an algorithm to represent images using divisive and partitioned base...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Clustering Presentation of Web Image Retrieval Results using Textual Information and Image Features

The increasing prevalence of broadband Internet access is making it easier to obtain rich contents like images, and more people are attempting image retrieval. We focus on how to present web image retrieval results to users. Most retrieval results contain multiple topics. To offset this complexity, many papers have discussed text retrieval result clustering [11][14]. In result clustering, we cl...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011